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The stability of homogeneous, isotropic, compressible, hyperelastic, thick spherical shells
subjected to external dead-load traction are investigated within the context of the "nite
elasticity theory. The stability of the "nitely deformed state and small, free, radial vibrations
about this state are investigated using the theory of small deformations superposed on large
elastic deformations. The frequencies of small free vibrations about the pre-stressed state are
obtained numerically. The loss of stability occurs when the motions cease to be periodic. The
critical values of stress and deformation are given for a foam rubber, slightly compressible
rubber and a nearly incompressible rubber.
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1. INTRODUCTION

The earlier research on compressible, hyperelastic solids were mostly limited to determining
a suitable model representing the behavior [1}3], and to analyzing deformations and
stresses in bodies of di!erent geometries which undergo "nite elastic deformations for
various boundary conditions [4}6].

Parallel to the works mentioned above, in 1982, Ball [7] investigated discontinuous
equilibrium solutions and cavitation in non-linear elasticity by modelling the appearance of
a cavity in the interior of a solid, homogeneous, isotropic, hyperelastic body once a critical
load is reached. Following Ball's work, a class of problems concerning the void nucleation
and growth in such bodies has been the subject of extensive research [8}10]. The problem
of bifurcation of a solid sphere made of compressible Varga material subjected to a uniform
radial tension on its outer surface was investigated by Horgan [11]. In reference [11], an
analytical solution was obtained for the critical stretch of the outer surface causing the
formation of a void at the center.

Recently, Akyuz and Ertepinar have studied the breathing motions [12] and
the asymmetric vibrations [13] of cylindrical shells of arbitrary wall thickness
about a "nitely deformed state caused by uniform external dead-load traction. For
breathing motion [12], it was observed that the shells display a hardening behavior
under an increasing inward pressure and a softening behavior under in#ation, while
the opposite was observed for asymmetric vibration [13]. As a result, in breathing motions,
failure occurs due to the in#ation without bound at a critical external outward pressure,
while in asymmetric vibrations, the loss of stability occurs under a critical external
inward pressure and the critical circumferential mode shape is independent of system
parameters.
0022-460X/01/420293#12 $35.00/0 ( 2001 Academic Press
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The present work deals with the breathing motions and the loss of stability of thick
spherical shells subjected to "nite radial deformations. The material of the body is assumed
to be a polynomial material [3] which is homogeneous, isotropic, compressible,
hyperelastic and reduces to Blatz}Ko material when some material constants are
specialized. The shell is "rst subjected to a "nite, uniform, radial extension. The stress and
the displacement "elds of this initial state are expressed using the theory of "nite elasticity
[14]. The resulting highly non-linear di!erential system of this state is solved numerically by
using the multiple shooting method [15]. The spherical shells are then exposed to
a secondary radial, dynamical displacement "eld. The formulation of this state is based on
the theory of small deformations superposed on large elastic deformations which is due to
Green et al. [16]. The boundary conditions of this state are obtained from the requirement
that the secondary surface tractions vanish. The homogeneous, linear di!erential system
governing the secondary state is solved numerically using the method of complementary
functions. For a non-trivial solution of the problem, it is required that the characteristic
determinant of the system vanishes. This determinant contains parameters pertaining to the
"nitely deformed state, the frequencies of small, free vibrations about this state, material
constants and the initial geometry of the shell. Here, the solution of this equation yields the
frequencies numerically. The loss of stability occurs when the motions about the "nitely
deformed state cease to be periodic, i.e., when the frequency of vibrations equals zero.

Numerical results are obtained to investigate the e!ects of several geometric and material
properties on the frequencies and the critical stretch of the outer surface when instability
occurs. The results corresponding to the limiting cases (such as solid shell, thin shell, foam
rubber, nearly incompressible rubber) are obtained and compared with those existing in the
literature.

2. FORMULATION

Consider a spherical shell made of a homogeneous, isotropic, compressible, and
hyperelastic material. Let r

1
and r

2
, respectively, denote the inner and outer radii of the

undeformed shell. The shell is subjected to a uniform radial traction q on its exterior surface.
The co-ordinates of a material point in the undeformed and the deformed states are,
respectively, given by (the details of the formulation can be found in the text by Green and
Zerna [14])

x
1
"r sin h cos/, x

2
"r sin h sin/, x

3
"r cos h (1)

and

X
1
"R (r) sin h cos /, X

2
"R(r) sin h sin/, X

3
"R(r) cos h. (2)

The non-zero components of the contravariant metric tensors of the undeformed and
deformed states, gij and Gij, are

(g11, g22, g33)"(R@2, 1/r2, 1/(r sin h)2 ), (G11, G22, G33)"(1, 1/R2, 1/(R sin h)2 ), (3)

where a prime denotes derivative with respect to r. Therefore, the three strain invariants are
given by

I
1
"R@2#2(R2/r2), I

2
"(R4/r4)#2(R2R@2/r2), I

3
"R4R@2/r4. (4)
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The strain energy density function = of a homogeneous, isotropic, hyperelastic,
compressible material can expressed in terms of three strain invariants

="=(I
1
, I

2
, I

3
). (5)

The components of the stress tensor qij are given by

qij"Ugij#WBij#pGij, (6)

where

U"(2/JI
3
) L=/LI

1
, W"(2/JI

3
) L=/LI

2
, p"2JI

3
(L=/LI

3
),

Bij"I
1
gij!girgjsG

rs
. (7)

It is now further assumed that the strain energy density function = has the form

="

k
2 Cf (I

1
!3)#(1!f ) A

I
2

I
3

!3B#2(1!2 f )(JI
3
!1)#(2 f#b )(JI

3
!1)2D , (8)

which has been proposed by Levinson and Burgess [3] and has been named &&polynomial
compressible material'' by the authors. In equation (8), k is the shear modulus of the
material for vanishingly small strains, f is a material constant whose value lies between zero
and unity, and b is expressed as

b"(4l!1)/(1!2l), (9)

where l is the Poisson ratio for the material as the deformations become vanishingly small.
It is noted that, for highly elastic rubbers and rubber-like materials, f"0 while for solid
natural and synthetic rubbers, f"1. When lP1

2
, the expression for the strain energy

density function reduces to that of a neo-Hookean material. It is also noted that the
Levinson}Burgess and Blatz}Ko models are identical for l"0)25 and f"0.

The only non-zero equation of equilibrium for this "nitely deformed state is the one in the
radial direction and it is given by

Lq11/LR#(2q11!R2 (q22#sin2 hq33) )/R"0. (10)

Substituting equations (3), (4), (6}8), into equation (10), the equation of equilibrium is
obtained as

f (2rR@/R2!2/R#r2RA/R2)#(1!f ) (2r4/R5!2/R2R@3#3r2RA/R2R@4)

#(2f#b ) (2RR@2/r2!2R2R@/r3#R2RA/r2)"0. (11)

The shell is assumed to be free of tractions on its inner surface and subjected to a uniform
tensile dead-load traction on its exterior surface with q*0, therefore, the associated
boundary conditions are

q11 (R
1
)"0 and q11(R

2
)"q(r

2
/R

2
)2. (12)
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One now superposes a secondary dynamic displacement "eld onto the "nitely deformed
state which is described by

w
1
"u (R (r), t), w

2
"w

3
"0 (13)

to investigate the existence of small, free, radial vibrations about the "nitely deformed shell.
In equations (13), w

1
, w

2
and w

3
are the radial, the circumferential and the meridional

components in the secondary dynamic displacement "eld.
The formulation of this state is based on the theory of small deformations superposed on

large elastic deformations (a detailed discussion of the theory is given in reference [16]). The
incremental metric tensors and the incremental stresses are given by

G*
ij
"w

i, j
#w

j, i
!2C r

ij
w
r
, G*ij"!GirGjsG*

rs
(14)

q*ij"gijU*#BijW*#B*ijW#G*ijp#Gijp*, (15)

where
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3
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1
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3
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3
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LI

3
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3
!
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3

I*
3
,
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JI
3

L2=
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1
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#

2
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3

L2=

LI2
2

I*
2
#

2

JI
3

L2=
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2
LI

3

I*
3
!

W

2I
3

I*
3
,

p*"I
3 A

2

JI
3

L2=

LI
1
LI

3

I*
1
#

2

JI
3

L2=

LI
2
LI

3

I*
2
#

2

JI
3

L2=

LI2
3

I*
3B#

p

2I
3

I*
3
, (16)

B*ij"(gijgrs!girgjs)G*
rs

and C r
ij

are the Christo!el symbols of the second kind, and a comma denotes di!erentiation
with respect to the following subscript. The incremental strain invariants I*

1
, I*

2
, and I*

3
, are

given by

I*
1
"2R@2w

1,R
#4(R/r2)w

1
, I*

2
"(4R2R@2/r2)w

1,R
#(4RR@2/r2#4R3/r4)w

1
,

I*
3
"(2R4R@2/r4)w

1,R
#(4R3R@2/r4)w

1
. (17)

Hence, in the absence of body forces, the incremental equations of motion reduce to

q@ij
,j
#C i

jm
q@mj#Cj

jm
q@mi#C @i

jm
qmj#C@j

jm
qmi"owK i#o@(Lhi/LXj)XG j, (18)

where wK i are the linear increment of the acceleration component in the i direction, and
C @i
jm

are the incremental values of the Christo!el symbols of the second kind. In equation
(18), o is the mass density of a "nitely deformed body and o@ is the increment of o.

Considering equation (13) and also noting that wK 1"wK
1
, the only non-vanishing equation

of motion is

Lq*11

LR
#

1

R
(2q*11!2R2q*22)#2w

1,RR
q11#

2

R Aw1,R
!

w
1

R B (q11#R2q22)"owK
1
, (19)
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which upon substitution of equations (6}8) and (13}17), equation (19) reduces to

u
,rr G f

r2

R2R@
#(1!f )

3r2

R2R@5
#(2f#b)

R2

r2R@H
#u

,r G f
2r

R2R@
#(1!f ) A

6r

R2R@5
!

12r2RA
R2R@6 B#(2 f#b) A

4R

r2
!

2R2

r2R@BH
#u G f A

6

R2R
!

4r2RA
R3R@

!

8r

R3B#(1!f )A
8r

R3R@4
!

12r2RA
R3R@5

!

14r4

R6R@B!(2f#b)
2R@
r2 H

"

o
k

uK , (20)

where a dot denotes di!erentiation with respect to time. The principle of conservation of
mass states the relationship between the current mass density o and the mass density o

0
of

the natural state as

o"(Jg/JG)o
0
. (21)

In equation (21), g and G denote, respectively, the determinants [g
ij
] and [G

ij
]. For this

secondary state, the boundary conditions, which are obtained from the requirement that the
secondary surface tractions vanish, are

q*11!G*11q11"0 at R"R
1

and R"R
2
. (22)

The solution of equation (20) may be assumed to be of the form

u"R*(R)e*ut, (23)

where u is the frequency of vibrations about the "nitely deformed state and R* is an
unknown function of R which, in turn, is a function of r. Hence, equation (20) is reduced to

R*
,rr

M f#(1!f )3/R@4#(2f#b)R4/r4N

#R*
,r
M f (2/r)#(1!f ) (6/rR@4!12RA/R@5)#(2f#b) (4R3R@/r4!2R4/r5)N

#R*M f (6/r2!4RA/R!8R@/rR)#(1!f )(8/rRR@3!12RA/RR@4!14r2/R4)

!(2 f#b)2R2R@2/r4N"!(o
0
/k)u2R*. (24)

Using equations (15), (16), and (23), the boundary conditions expressed by equation (22)
are given by

R*
,r G f

r2

R2
#(1!f )

3r2

R2R@4
#(2f#b)

R2

r2 H
#R*G!f

2r2R@
R3

#(1!f )
2r2

R3R@3
#(2f#b)

2RR@
r2 H"0 at R"R

1
and R"R

2
.

(25)
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The system of equations, equations (11) and (12), governing the "nitely deformed state and
the system of equations, equations (33) and (34), governing the superposed dynamic state
are solved by a numerical scheme in the next section.

3. THE ANALYSIS OF THE PROBLEM

For the analysis of the problem, it is desirable to express the variables in
a non-dimensional form. For this purpose, the following quantities are introduced:

rN"r/r
2
, RM "R/r

2
, RM *"R*/r

2
, qN 11"q11/k, qN "q/k,

uN "u/r
2
, uN "u Jo

0
r2
2
/k. (26)

The non-dimensional form of equation (11) is

f (2rNRM @/RM 2!2/RM #rN 2RM A/RM 2)#(1!f ) (2rN 4/RM 5!2rN /RM 2RM @3#3rN 2RM A/RM 2RM @4)

#(2 f#b)(2RM RM @2/rN 2!2RM 2RM @/rN 3#RM 2RM A/rN 2 )"0, (27)

while the associated boundary conditions given by equations (12) reduce to

f
rN 2
1
RM @

1
RM 2

1

!(1!f )
rN 2
1

RM 2
1
RM @3

1

#(2f#b)
RM 2

1
RM @

1
rN 2
1

#(1!4f!b )"0,

f
RM @

2
RM 2

2

!(1!f )
1

RM 2
2
RM @3

1

#(2f#b)RM 2
2
RM @

2
#(1!4 f!b )"qN A

1

RM
2
B
2
. (28)

The non-dimensional governing equation for the secondary state is

ARM *
,rr
#BRM *

,r
#CRM *"0, (29)

where

A"f#(1!f )3/RM @4#(2 f#b)RM 4/rN 4,

B"f (2/rN )#(1!f ) (6/rNRM @4!12RM A/RM @5 )#(2f#b) (4RM 3RM @/rN 4!2RM 4/rN 5 ),

C"f (6/rN 2!4RM A/RM !8RM @/rNRM )#(1!f )(8/rNRM RM @3!12RM A/RM RM @4!14rN 2/RM 4)

!(2f#b)(2RM 2RM @2/rN 4 )#uN 2. (30)

The boundary conditions of this state, equations (25), reduce to

MRM *
,r
#NRM *"0 at R"R

1
and R"R

2
, (31)

where

M"f (rN 2/RM 2 )#(1!f )3rN 2/RM 2RM @4#(2f#b) (RM 2/rN 2 ),

N"!f (2rN 2RM @/RM 3)#(1!f ) (2rN 2/RM 3RM @3)#(2f#b) (2RM RM @/rN 2 ). (32)
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For the "nitely deformed state, no closed-form solution of the highly non-linear system of
equations, equations (27) and (28), seems possible. To solve these equations numerically, the
boundary value problem is converted to an initial value problem by using the multiple
shooting method [15]. For this purpose, equation (27) is "rst converted into a set of two "rst
order equations of the form.

y@
1
"y

2
,

y@
2
"

f A
2

y
1

!

2xy
2

y2
1
B#(1!f ) A

2x

y2
1
y3
2

!

2x4

y5
1
B#(2 f#b) A

2y2
1
y
2

x3
!

2y
1
y2
2

x2 B
f
x2

y2
1

#(1!f )
3x2

y2
1
y4
2

#(2 f#b)
y2
1

x2

(33)

and the associated boundary conditions, equations (28), are now expressed as

f
x2y

2
y2
1

!(1!f )
x2

y2
1
y3
2

#(2f#b)
y2
1
y
2

x2
#(1!4 f!b)"0 at R

1
,

f
y
2

y2
1

!(1!f )
1

y2
1
y3
2

#(2f#b)y2
1
y
2
#(1!4f!b)"qN A

1

y
1
B
2

at R
2
, (34)

where

x"rN , y
1
"RM , y

2
"RM @. (35)

Note that the boundary conditions given by equation (34) can be rewritten in terms of the
outer stretch ratio j ("R

2
/r

2
which is the value of y

1
at R

2
) and wall thickness s ("r

1
/r

2
which is the value of x at R

1
) as

f
s2y

2
y2
1

!(1!f )
s2

y2
1
y3
2

#(2f#b)
y2
1
y
2

s2
#(1!4 f!b)"0 at R

1
,

f
y
2

j2
!(1!f )

1

j2y3
2

#(2f#b)j2y
2
#(1!4 f!b)"qN A

1

jB
2

at R
2
. (36)

The solution of equations (33) together with equations (34) is obtained by using
a FORTRAN code called BVPSOL and developed by Deu#ard and Bader [15]. This
subroutine is a &&(B)oundary (V)alue (P)roblem (So)lver for highly non-linear two-point
boundary value problems using (L)ocal linear solver (condensing algorithm) for the
solution of the arising linear subproblems by multiple shooting approach''. For a nearly
solid shell, 4001 equally spaced nodal points along the radial direction are used to attain the
desired accuracy. The number of necessary nodal points decreases as the shell thickness
increases.

Equation (29) which governs the secondary state is linear in RM * but, since no closed-form
solution is available for the "nitely deformed state, the coe$cients A, B, and C in equation
(29) contain constants known pointwise and the unknown frequency, and, hence, numerical
approach must be used to obtain the solution of this state. The method of complementary
functions is used to transform the linear boundary value problem to an initial value
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problem. For this purpose, the unknown function RM * is expressed as

RM * (r)"c
1
RM *

1
#c

2
RM *

2
, (37)

where c
1

and c
2

are constants, and RM *
1

and RM *
2

are the two homogenous solutions of
equation (29). Next, equation (29) is converted into a set of two "rst order equations of the
form

z@
1
"z

2
, z@

2
"!(Bz

2
#Cz

1
)/A, (38)

where

z
1
"RM *, z

2
"RM *

,r
. (39)

To determine RM *
1

and RM *
2

at nodal points, equations (38) are integrated with initial
conditions z

1
(R

1
)"1 and z

2
(R

1
)"0, and z

1
(R

1
)"0 and z

2
(R

1
)"1 respectively. The

Runge}Kutta method of order four is used to integrate equation (38). Equation (31) now
reduces to

C
M(R

1
)RM *

1,r
(R

1
)#N (R

1
)RM *

1
(R

1
)

M(R
2
)RM *

1,r
(R

2
)#N (R

2
)RM *

1
(R

2
)

M(R
1
)RM *

2,r
(R

1
)#N (R

1
)RM *

2
(R

1
)

M(R
2
)RM *

2,r
(R

2
)#N (R

2
)RM *

2
(R

2
)D G

c
1

c
2
H"G

0

0H , (40)

where the characteristic determinant, which must vanish for a non-trivial solution, contains
parameters pertaining to the "nitely deformed state, material properties and initial
geometry of the shell and the unknown frequencies of small, free vibration about the "nitely
deformed state. When the frequency of vibrations ceases to be real valued, the
corresponding "nitely deformed state becomes unstable.

4. DISCUSSION OF THE RESULTS

The approach used in this work enables one to locate the points corresponding to the
critical stretch ratio for which the shell with a pre-existing void of arbitrary radius becomes
unstable. Illustrative examples are worked out numerically to investigate the e!ects of
material constants f and l, the outer stretch ratio j and the wall thickness s on the frequency
u6 and the critical outer stretch ratio, j

cr
, which is de"ned as the stretch ratio of the outer

surface when the frequency approaches zero. In particular, the behaviors of the foam
rubber, the nearly incompressible (l"0)499), and the slightly compressible hyperelastic
materials represented by the Levinson}Burgess model are investigated. For the foam
rubber, ( f"0 and l"0)25), Levinson}Burgess and Blatz}Ko materials are identical. When
f"1 and l"0)5, Levinson}Burgess material reduces to neo-Hookean material which is
incompressible. In this limiting case, the results obtained reduce to those obtained by Wang
and Ertepinar [17].

Figure 1 displays the variation of radial stress on the outer surface, q6 11 as a function of
outer stretch ratio j for a spherical shell with a thickness ratio s"0)90 for three di!erent
hyperelastic materials, namely the foam rubber ( f"0, l"0)25), the slightly compressible
material ( f"1, l"0)46), and the nearly incompressible material ( f"1, l"0)499). In this
"gure, the points corresponding to the critical values are also indicated. It is observed that
the critical outer radial stress decreases as the material compressibility increases. On the
other hand, the outer critical stretch ratios are almost equal for foam rubber and slightly
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Figure 2. The outer radial stress versus outer stretch ratio for s"0)10: r, points corresponding to critical
value; ** , foam rubber; } } } , slightly compressible rubber; )))))) , nearly incompressible material.
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compressible material. It is also seen that for all material models, the pre-stressed spherical
shell shows a softening behavior as j increases. The softening behavior becomes more
pronounced as j approaches j

cr
.

The results of a similar investigation are shown in Figure 2 for a spherical shell with a shell
thickness s"0)10. For this thick shell, the outer critical stretch ratio is signi"cantly larger for
foam rubber as compared to the other two models while the outer critical radial stress is larger
for slightly compressible material. This "gure indicates that foam rubber shows ductile
behavior. By comparing Figures 1 and 2, it is seen that for the nearly incompressible and
slightly compressible materials, the ductility decreases as the shell thickness increases.
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Figure 4. Void growth versus outer stretch ratio for s"0)10: r, points corresponding to critical value;** ,
foam rubber; } }} , slightly compressible rubber; )))))) , nearly incompressible material.

302 U. AKYUZ AND A. ERTEPINAR
In Figure 3, the void growth d("RM
1
/rN

1
) is plotted as a function of outer stretch ratio j for

shells with a shell thickness s"0)90. For all material models, the d}j relationship is almost
linear. Among the three material models, the nearly incompressible material has the
smallest critical void growth and critical outer stretch ratio.

Figure 4 displays the variation of the void growth as a function of outer stretch ratio
j for a spherical shell with a shell thickness s"0)10. Behaviour is similar to that
shown in Figure 3, in that the nearly incompressible material has the smallest critical void
growth and critical outer stretch ratio. It is also seen that the outer critical stretch ratio is
larger for foam rubber while the critical void growth is larger for slightly compressible
material.
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The change of critical radial stress at the outer surface of the shell as a function
of the thickness ratio is investigated in Figure 5. The foam rubber has the smallest critical
outer radial stress values for all thicknesses. For materials with f"1 (the slightly
compressible and nearly incompressible materials), it is observed that, for the thick shells,
qN 11
cr

increases as the l decreases, the e!ect of l becomes insigni"cant for moderately thick and
thin shells.

Figure 6 shows the change of critical stretch ratio of the shell as a function of the
thickness ratio. It is seen that, for all shell thickness, jN

cr
increases as the compressibility of

the material increases.



304 U. AKYUZ AND A. ERTEPINAR
REFERENCES

1. F. JOHN 1960 Communications on Pure and Applied Mathematics 13, 239}296. Plane strain
problems for a perfectly elastic material of harmonic type.

2. P. J. BLATZ and W. L. KO 1962 ¹ransactions of Society of Rheology 6, 223}251. Application of
"nite elasticity theory to the deformation of rubbery materials.

3. M. LEVINSON and I. W. BURGESS 1971 International Journal of Mechanical Science 13, 563}572.
A comparison of some simple constitutive equations for slightly compressible rubber-like
materials.

4. M. M. CARROLL 1988 Journal of Elasticity 20, 65}92. Finite strain solutions in compressible
isotropic elasticity.

5. A. ERTEPINAR 1991 International Journal of Engineering Science 29, 203}213. Compressible,
hyperelastic spinning tubes subjected to circumferential shear.

6. M. ZIDI 1999 Mechanics Research Communications 26, 245}252. Torsion and telescopic shearing
of a compressible hyperelastic tube.

7. J. M. BALL 1982 Philosophical ¹ransactions of Royal Society of ¸ondon A 306, 577}611.
Discontinuous equilibrium solutions and cavitation in nonlinear elasticity.

8. C. O. HORGAN and R. ABEYARATNE 1986 Journal of Elasticity 16, 189}200. A bifurcation problem
for a compressible nonlinearly elastic medium: growth of a micro-void.

9. C. O. HORGAN and T. J. PENCE 1989 ¹ransactions of the American Society of Mechanical
Engineers 56, 302}308. Cavity formation at the center of a composite incompressible nonlinearly
elastic sphere.

10. S. BIWA 1995 International Journal of Non-¸inear Mechanics 30, 899}914. Critical stretch for
formation of a cylindrical void in a compressible hyperelastic material.

11. C. O. HORGAN 1992 International Journal of Solids Structures 29, 279}291. Void nucleation and
growth for compressible non-linearly elastic materials: an example.

12. U. AKYUZ and ERTEPINAR 1997 International Journal of Engineering Science 35, 1265}1275.
Breathing motions and loss of stability of pre-stressed compressible hyperelastic cylindrical shells.

13. U. AKYUZ and A. ERTEPINAR 1999 International Journal of Non-linear Mechanics 34, 391}404.
Stability and asymmetric vibrations of pressurized compressible hyperelastic cylindrical shells.

14. A. E. GREEN and W. ZERNA 1968 ¹heoretical Elasticity. Oxford; Oxford University Press, second
edition.

15. P. DEUFLHARD and G. BADER 1982 ¹echnical Report 163, Vol. SFB 123, University of Heidelberg.
Multiple shooting techniques revisited.

16. A. E. GREEN, R. S. RIVLIN and R. T. SHIELD 1952 Proceedings of Royal Society A 211, 128}154.
General theory of small elastic deformation superposed on "nite elastic deformations.

17. A. S. D. WANG and A. ERTEPINAR 1972 International Journal of Non-linear Mechanics 7, 539}555.
Stability and vibrations of elastic thick-walled cylindrical and spherical shells subjected to
pressure.


	1. INTRODUCTION
	2. FORMULATION
	3. THE ANALYSIS OF THE PROBLEM
	4. DISCUSSION OF THE RESULTS
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

	REFERENCES

